J. Fluid Mech. (2010), vol. 645, pp. 447-478.  (© Cambridge University Press 2010 447
doi:10.1017/S0022112009992655

Feedback control of unstable steady states of
flow past a flat plate using reduced-order
estimators

S. AHUJAfAND C. W. ROWLEY
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA

(Received 4 February 2009; revised 2 October 2009; accepted 3 October 2009)

We present an estimator-based control design procedure for flow control, using
reduced-order models of the governing equations linearized about a possibly unstable
steady state. The reduced-order models are obtained using an approximate balanced
truncation method that retains the most controllable and observable modes of the
system. The original method is valid only for stable linear systems, and in this paper,
we present an extension to unstable linear systems. The dynamics on the unstable
subspace are represented by projecting the original equations onto the global unstable
eigenmodes, assumed to be small in number. A snapshot-based algorithm is developed,
using approximate balanced truncation, for obtaining a reduced-order model of the
dynamics on the stable subspace.

The proposed algorithm is used to study feedback control of two-dimensional flow
over a flat plate at a low Reynolds number and at large angles of attack, where the
natural flow is vortex shedding, though there also exists an unstable steady state. For
control design, we derive reduced-order models valid in the neighbourhood of this
unstable steady state. The actuation is modelled as a localized body force near the
trailing edge of the flat plate, and the sensors are two velocity measurements in the near
wake of the plate. A reduced-order Kalman filter is developed based on these models
and is shown to accurately reconstruct the flow field from the sensor measurements,
and the resulting estimator-based control is shown to stabilize the unstable steady
state. For small perturbations of the steady state, the model accurately predicts the
response of the full simulation. Furthermore, the resulting controller is even able to
suppress the stable periodic vortex shedding, where the nonlinear effects are strong,
thus implying a large domain of attraction of the stabilized steady state.

1. Introduction

The goal of this paper is two-fold; the first goal is to present an algorithm for
developing reduced-order models of the input-output dynamics of unstable high-
dimensional linear state-space systems (such as linearized Navier—Stokes equations
with actuation and sensing), while the second goal is to demonstrate the algorithm
by developing estimation-based controllers to stabilize unstable steady states of a
two-dimensional low-Reynolds-number flow past a flat plate at a large angle of
attack.
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1.1. Model reduction for unstable systems

Development of feedback control strategies based on linearized Navier—Stokes
equations is attractive due to the ready availability of a large class of control
techniques, and there has been substantial progress in this direction in the past
decade, reviewed in detail by Kim & Bewley (2007). However, many of these
techniques are limited to relatively small dimensional systems ~O(10%), while the
numerical discretization of fluid flows invariably result in huge dimensional systems,
typically O(10°-%). Thus, model reduction has played an important role in making
these tools further accessible to fluid flows.

Extensive research effort in model reduction has focused on the method of proper
orthogonal decomposition (POD) and Galerkin projection, developed first by Lumley
(1970). The main disadvantage of this technique is that, although the POD modes
capture the energetically important structures of the flow, the reduced-order models
obtained by the subsequent Galerkin projection of the governing equations onto
these modes often do not faithfully represent the dynamics. Various modifications
to improve this method have been proposed and used for flow control; refer to the
introduction of Siegel et al. (2008) for a review of these techniques. The POD/Galerkin
methods have been applied for flow control in various contexts, such as bluff-body
wake suppression (Graham, Peraire & Tang 1999; Noack et al. 2004; Tadmor et al.
2007; Siegel et al. 2008), noise reduction in cavity flow (Rowley & Juttijudata 2005;
Gloerfelt 2008) and drag reduction in turbulent boundary layers (Lumley & Blossey
1998; Prabhu, Collis & Chang 2001). Another model reduction technique, based
on projection onto the global (stable or unstable) eigenmodes of the flow linearized
about steady states, has been used by Akervik et al. (2007) and Henningson & Akervik
(2008) in the context of spatially developing flows such as separated boundary layers.
In this paper, we focus on an approximate balanced truncation method developed
by Rowley (2005) as an approximation to the original method of Moore (1981).
This technique captures the dynamically important modes of the system, and the
non-approximate version provides rigorous bounds for the resulting reduced-order
models. The method, sometimes called balanced POD, was used to obtain models of
the linearized channel flow by Ilak & Rowley (2008) and the Blasius boundary layer
by Bagheri, Brandt & Henningson (2009a), and was shown to accurately capture the
control actuation and also to outperform the POD/Galerkin models.

The balanced truncation method of Moore (1981) is applicable only to systems
linearized about stable steady states. An extension to unstable linear systems was
proposed by Zhou, Salomon & Wu (1999), by introducing frequency domain
definitions of controllability and observability Gramians. Reduced-order models were
obtained by first decoupling the dynamics on the stable and unstable subspaces, and
then truncating the relatively uncontrollable and unobservable modes on each of the
two subspaces. In this paper, we present an approximation algorithm for balanced
truncation of linear unstable systems, which results in models that are equivalent to
those of Zhou et al. (1999) on the stable subspace. The dynamics on the unstable
subspace is treated exactly by a projection onto the global eigenmodes, as in Akervik
et al. (2007).

1.2. Control of flow past two-dimensional wings

As a proof-of-concept study, the modelling procedure is applied to the problem of
two-dimensional low-Reynolds-number flow past a flat plate at a large angle of attack.
We develop reduced-order models and design controllers that stabilize the unstable
steady states of this flow. Our motivation for the choice of this problem comes from
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our interest in regulating vortices in separated flows behind low aspect-ratio wings,
which is of importance in design of micro air vehicles (MAVs). Recently, design of
MAVs has been inspired from experimental observations in insect and bird flights of
a stabilizing leading edge vortex (see Ellington et al. 1996; Birch & Dickinson 2001),
which remains attached throughout the wing stroke and provides enhanced lift. So,
it could be beneficial to design controllers that can manipulate the wake of MAVs
to enhance lift and achieve better maneuverability in presence of wind gusts. Recent
studies in this direction, using open-loop control of the flow past low-aspect-ratio
wings using steady or periodic blowing, were performed computationally by Taira &
Colonius (2009a) and experimentally by Williams et al. (2008). These studies explored
different forcing amplitudes and frequencies, locations and directions. However, the
design of feedback controllers remains a challenge, due to the large dimensionality
of the problem and complex flow physics. We present computational tools, that we
hope can at least pave a direction and provide techniques towards addressing some of
these challenges. We consider the two-dimensional flow past a flat plate, actuated by
a localized body force close to the trailing edge, with two near-wake velocity sensors.
We design a reduced-order compensator and show that it is able to suppress vortex
shedding at high angles of attack.

Many previous studies have focused on the control of flow past a cylinder, which
is qualitatively similar to the flow past a flat plate at large angle of attack, with the
natural flow in both the cases being periodic vortex shedding. For the cylinder, the
flow undergoes a transition from steady state to periodic shedding with increasing
Reynolds number, while a similar transition occurs in the flat plate with increasing
angle of attack. There has been considerable research effort on suppression of this
shedding in cylinder and other bluff body wakes, using passive and active, open-loop
and feedback control, as reviewed by Choi, Jeon & Kim (2008). Among those, some
techniques are based on reduced-order models; for instance, Gillies (1998) developed
models using artificial neural networks and a POD basis, Graham et al. (1999)
modified the POD/Galerkin method to account for actuation by means of cylinder
rotation, while Siegel et al. (2008) developed a double POD method to account for
changes in the wake structure during transients. Some earlier efforts in the control
of a flat-plate wake include those by Cortelezzi (1996), Cortelezzi, Chen & Chang
(1997) who used vortex-based methods to model the flow past a vertical plate (angle
of attack = 90°); vortex-based models were initially developed by and form their own
class of modelling techniques reviewed recently by Protas (2008). Lagrangian coherent
structures were used by Wang et al. (2003) to enhance mixing in flow past a bluff
body with the trailing surface similar to the vertical flat plate. One of the few efforts
towards control of flat plate at an angle of incidence was by Zannetti & Iollo (2003),
who used a passive leading-edge suction control along with a potential flow vortex
model. Pastoor et al. (2008) also used reduced-order vortex models for drag reduction
on an elongated D-shaped bluff body.

This paper is organized as follows: In §2, we first briefly describe the balanced
truncation method for unstable systems as developed by Zhou et al. (1999), and
the approximate balanced truncation procedure called balanced POD of Rowley
(2005) for very large dimensional stable systems. Then, we present an algorithm for
approximate balanced truncation of large dimensional unstable systems, assuming that
the dimension of unstable subspace is small and the corresponding global eigenmodes
can be computed. In §3, we briefly describe the numerical technique of Colonius &
Taira (2008) using a fast immersed boundary method, and present the linearized and
adjoint formulations of this numerical method. In §4, we present numerical results,
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using the model example of two-dimensional flow past a flat plate at a large angle
of attack and a low Reynolds number Re =100. First, we perform a steady-state
analysis and compute the branch of steady states in the entire range of angles of
attack, 0 <a <90°. We also compute the direct and adjoint global eigenmodes of the
flow linearized about the unstable steady state at o =35°. We present reduced-order
models of the linearized dynamics and use linear optimal control techniques to design
controllers that stabilize this steady state. Full-state feedback and more practical near-
wake velocity measurement based feedback controllers are derived, implemented in
the nonlinear equations, and shown to suppress vortex shedding. The paper concludes
with a brief discussion in § 5.

2. Model reduction methodology
2.1. Balanced truncation of unstable systems

We briefly describe a model reduction procedure using the balanced truncation method
for unstable systems developed by Zhou et al. (1999). Consider the state-space system

x = Ax + Bu,

y = Cr, } (2.1
where x € R” is the state, u € IR? is the input, and y € IR? is the output of the system;
the dot over x represents differentiation with respect to time. The eigenvalues of A
are assumed to be anywhere on the complex plane, except on the imaginary axis.

The standard balanced truncation procedure developed by Moore (1981), valid only
for stable systems, starts with defining the controllability and observability Gramians
of the system (2.1) as follows:

w *
W, = / eABB*e? ! dt
o (2.2)
and Woz/ eA'cree* dt,
0

where asterisks are used to denote adjoint operators. A coordinate transformation is
then obtained such that the Gramians (2.2) of the transformed system are equal and
diagonal. The diagonal entries of the transformed Gramians, called Hankel singular
values (HSVs), decrease monotonically and are directly related to the controllability
and observability of the corresponding states. A reduced-order model is obtained by
truncating the states with relatively small HSVs, that is, the states which are almost
uncontrollable and unobservable.

For unstable systems, the integrals in (2.2) are unbounded and hence the Gramians
are ill-defined. A modified technique was proposed by Zhou et al. (1999) based on
the following frequency domain definitions of the Gramians:

W, = 21/ (iwl — A)"'BB* (—iwl — A") ! dw,

T (23)
w, = / (—iwl — A )'C*Cliwl — A) ! dw.

2n J_,

By using Parseval’s theorem, it can be shown that for stable systems, the frequency
domain definitions (2.3) are equivalent to the time domain definitions (2.2). Note
that, unlike the time domain integrals in (2.2), the integrals in (2.3) are bounded even
for unstable systems, as long as the eigenvalues of A are not on the imaginary axis.
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The model reduction procedure of Zhou et al. (1999) begins by first transforming the
system (2.1) to coordinates in which the stable and unstable dynamics are decoupled.
That is, let T be a transformation such that if x = T¥, the system (2.1) transforms to

& d iu _ Au 0 ~ BU
*Ta\g) " \oa) 8" (2.4)
y=(C, C)%

Here, A, and A, are such that all their eigenvalues are in the right- and left-half
complex planes respectively, while ¥, and ¥, are the corresponding states. Next, denote
the controllability and observability Gramians corresponding to the set (A;, B, Cy)
describing the stable dynamics by W and W: respectively. Similarly, denote the
Gramians corresponding to the set (—A,, B,, C,) by W: and W;. The Gramians of
the original system are then related to those corresponding to the subsystems by

we o
W, =T T
0w

1 (Wo 0 1
and W,=(T) T .
o w

(2.5)

A system is said to be balanced if its Gramians defined by (2.5) are equal and diagonal,
in which case the diagonal entries are called the generalized HSVs. A reduced-order
model is obtained by truncating the states with small generalized HSVs.

2.2. Approximate balanced truncation of stable systems

For systems of large dimension ~O(10°7%) such as those encountered here, the
Gramians (2.5) are huge matrices which cannot be easily computed or stored. A
computationally tractable procedure was introduced by Rowley (2005) for obtaining
an approximate balancing transformation. We first briefly describe this method,
valid only for stable systems, and then present an extension to unstable systems.
The procedure consists of computing the impulse responses of the system (2.1) and
stacking the resulting snapshots of the state x as columns of a matrix X. It also
requires state-snapshots of the impulse responses of the adjoint system

Z =A*z+C*v,}

o B (2.6)

which are stacked as columns of a matrix Z. Then, the Gramians (2.2) can be
approximated as

W, ~ XX, W, ~ 2Z". (2.7)

The approximate Gramians (2.7) are not actually computed due to the large storage
cost, but the leading columns (or modes) of the transformation that balances these
Gramians are computed using a cost-efficient algorithm. It involves computing the
singular value decomposition of

Zx—usv —(u, u) (=0 Vi
—uzv = u) (3 o) () (238)
2

where ¥ € R”* is a diagonal matrix of the most significant HSVs greater than a
cutoff which is a modelling parameter, while ¥, € R""*"") is a diagonal matrix
of smaller and zero HSVs. Note that Z"Xc€R™** is a small matrix, where n,
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and n, are the number of snapshots of the impulse responses of systems (2.1)
and (2.6) respectively. For fluid systems that we are interested in, the typical number
of snapshots is O(10°~%), thus resulting in a reasonable computational cost, and
typically r < 50. The leading columns and rows of the balancing transformation and
its inverse are obtained using

o =xv,x,'? w=zux'"" (2.9)

where @, ¥ € IR"*", and the two sets of modes are bi-orthogonal; that is, ¥ =1.
The reduced-order model of (2.1) is then obtained by expressing x = ®a, a € R”, and
using the bi-orthogonality of @ and ¥':

a =W Ada+ ¥ Bu, (2.10)
y =C®Pa. (2.11)

2.2.1. Output projection

When the number of outputs of the system (rows of C) is large, the algorithm
described in §2.2 can become intractable. The reason for this is that it involves one
simulation of the adjoint system (2.6) for each component of v, the dimension of
which is the same as the number of outputs. This number is often large in fluids
systems where a good model needs to capture the response of the entire system (C=1)
to a given input. To overcome this problem, Rowley (2005) proposed a technique
called output projection, which involves projecting the output y of (2.1) onto a small
number of energetically important modes obtained using POD. Let the columns
of ® e IR consist of the first m POD modes of the dataset consisting of outputs
obtained from an impulse response of (2.1). Then, for the purpose of obtaining a
reduced-order model, the output of (2.1) is approximated by

y=00Cx, (2.12)

where @@" is an orthogonal projection of the output onto the first m POD modes.
The resulting output-projected system is optimally close (in the L’>—sense) to the
original system, for an output of fixed rank m. With this approximation, only m
adjoint simulations are required to approximate the observability Gramian; refer
to Rowley (2005) for details. The number of POD modes m for output projection is
a design parameter and is typically chosen to capture more than 90 % of the output
energy. In the rest of this paper, the models resulting from this approximation of the
output are referred to as m-mode output projected models.

2.3. Approximate balanced truncation of unstable systems

The approximate balancing procedure described in the previous section, which is
essentially a snapshot-based method, does not extend to unstable systems since the
impulse responses of (2.1) and (2.6) are unbounded. We could consider applying
the algorithm to the two subsystems given in (2.4), but the transformation T
that decouples (2.1) itself is not available. However, when the dimension of the
unstable subsystem is small, we show that it is not necessary to compute the
entire transformation T and it is still possible to obtain an approximate balancing
transformation. Here, we present an algorithm for computing such a transformation
and also show that it essentially results in a method that is a slight variant of the
technique of Zhou et al. (1999) presented in §2.1. The idea behind the algorithm is
to project the original system (2.1) onto the stable subspace of A. Then, one obtains
a reduced-order model of the projected system using the snapshot-based procedure
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described in §2.2. The dynamics projected onto the unstable subspace can be treated
exactly on account of its low dimensionality.

We assume that the number of unstable eigenvalues n, is O(10) and can be
computed numerically, say using the computational package ARPACK developed
by Lehoucq, Sorensen & Yang (1998). We further assume that the bases for the right
and the left unstable eigenspaces @, ¥, € R"*" can be computed. For the algorithm,
we need the following projection operator onto the stable subspace of A:

P,=1—&,0, (2.13)

where @, and ¥, have been scaled such that ¥, @, =1, . We use the operator IP; to
obtain the dynamics of (2.1) restricted to the stable subspace of A as follows:

x, = Ax, + IP,Bu, }

where x; =P,x. The adjoint of (2.14) is the same as the dynamics of (2.6) restricted
to the stable subspace of A" using IP;, and is given by

ZS = A*ZS + IP:C*U, }

2.15
w, = B"IP;z;, ( )

where z, =IP;z. We compute the state-impulse responses of (2.14) and (2.15) and
stack the resulting snapshots x, and z,; in matrices X; and Z; respectively. As in (2.8),
we compute the singular valued decomposition of Z;X; and use the expressions (2.9)
to obtain the balancing modes @, and the adjoint modes ¥, where again ¥ ;@ =1,.
The reduced-order modes are obtained by expressing the state x as

x=®,a,+d,a,, (2.16)

where a, € R™ and a, €R’. Substituting (2.16) in (2.1) and pre-multiplying by ¥,
and ¥}, we obtain

da d /a, 'I’ZA¢M 'IIZA¢Y a, U/
== = +( ") Bu, (2.17)

t dt \a, VIAD, WIAD,) \a; v
y=C(®,a, + P;a,) = (Cd)u Cd)s) a. (2.18)

Now, since range(A®,) < span(®,), we can write AP, =P, A for some A € R"*",
and using the properties of eigenvectors, we have ¥ ;A®,=W¥ .9, ,A =0. Similarly,
it can be shown that ¥ A®,=0. Thus, the cross terms in (2.17) are zero and the
reduced-order model is

da (V.A®, 0 (au> (W:) 5 A, 0 (au> B,
E— + . u= _ _I_ N u,
dr 0 wAs, ) \a)  \¥ o 4)\a B, (2.19)

y =C(®.a, + P;a,) = (Cu 6Y) a.

The procedure described so far to obtain the reduced-order model (2.19) is related
to the procedure of Zhou et al. (1999) described in §2.1. It can be shown that the
transformation that balances the Gramians defined by (2.5) results in a system in
which the unstable and stable dynamics are decoupled. Furthermore, the resulting
stable dynamics are the same as those given by the equations describing the a;-
dynamics of (2.19). That is, balancing the stable part of the Gramians W, and W,
defined in (2.5) (balancing W! and W) is the same as balancing the Gramians of
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the stable subsystem (2.14); a proof is outlined in Appendix A. In our algorithm,
the unstable dynamics are not balanced, while they are by Zhou et al. (1999). A
disadvantage of the approach of Zhou et al. is that an unstable mode might be
truncated resulting in a model which does not capture the instability, which is
undesirable for control purposes. Finally, we remark that the technique developed
here is applicable only when the global unstable eigenmodes are finite in number
and can be numerically computed. When the unstable eigenspace dimension number
becomes large, say > 100, the computation of these modes can become increasingly
difficult. However, for many fluid problems, this number is typically small and these
modes have been computed even for complicated three-dimensional flows recently,
such as the jet in crossflow by Bagheri et al. (2009b).

2.3.1. Output projection for the stable subspace

For systems with a large number of outputs, the number of adjoint simula-
tions (2.15) can become intractable; however, the output projection of §2.2.1 can
readily be extended to unstable systems. Instead of projecting the entire output y onto
POD modes, we first express the state x =x, + x,, where x, = (I —P;)x and x; =P,x
are projections on the unstable and stable subspaces of A respectively. We similarly
express the output as y=y,+y, =C(x, +x;). We then project the component y,
onto a small number of POD modes, of the data set consisting of the outputs from
an impulse response of (2.14). If the POD modes are represented as columns of the
matrix @; € R?7*", the output of (2.1) is approximated by

y = [C(I—TP,) +O,0,CP|x =Cx, + ©,0,Cx,. (2.20)

Finally, with the state x expressed by the modal expansion (2.16), the output of the
reduced-order model (2.19) is given by

y=(CP, ©,0;CP,) <a> . (2.21)

s

2.3.2. Algorithm

The steps involved in obtaining reduced-order models of (2.1), for the case where
the output is the entire state (C=1), can now be summarized as follows:

(a) Project the original system (2.1) onto the subspace spanned by the stable
eigenvectors of A in the direction of the unstable eigenvectors of A to obtain (2.14).
Compute the (state) response to an impulse on each input of (2.14) and stack the
snapshots in a matrix X;.

(b) Assemble the resulting snapshots, and compute the POD modes 6; of the
resulting data set. These POD modes are stacked as columns of ©.

(¢) Choose the number of POD modes one wants to use to describe the output
of (2.14). For instance, if 10% error is acceptable, and the first m POD modes
capture 90 % of the energy, then the output is the velocity field projected onto the
first m modes. Thus, the output is represented as y, = @ x;.

(d) Project the adjoint system (2.6) onto the subspace spanned by the stable
eigenvectors of A” in the direction of the unstable eigenvectors of A* to obtain (2.15).
Compute the (state) response of (2.15), starting with each POD mode 6, as the initial
condition (one simulation for each of the first m modes). Stack the snapshots in a
matrix Z,.

(e) Compute the singular value decomposition of M=Z X, =U,X V,, where
¥, eR"™, and r = rank(M).
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(/) Define balancing modes ¢’ and the corresponding adjoint modes ¥ as columns
of the matrices @, and ¥, where

&, =XV, X2, v, =YUZX 2 (2.22)
(g) Obtain the reduced-order model using (2.19), which can be written as
A, 0 B, S
d—a= _]la+ | _ |u=Aa+Bu, (2.23)
dr 0 A B,
y=(C, C,)a=Ca  where, (2.24)
a= <”> , (2.25)
a
A, =V Ad, B,=¥B, C,=9o, (2.26)
A =V A®, B,=WB C,=0,0.9, (2.27)

Alternatively, the outputs can be considered to be simply the coefficients of the
unstable modes a, and the coefficients of the POD modes @, of the stable subspace.
With this choice, the output can be represented as

(€. o (a)
) 0 C,) \a,

C.=1l,. C, =0, (2.29)

Ca, where, (2.28)

Finally, if the initial state x, is known, the initial condition of (2.23) can be obtained
using

ap= (¥, ¥,) xo (2.30)

In the remainder of this paper, we demonstrate the algorithm developed in this
section by obtaining reduced order models of the two-dimensional uniform flow past
a flat plate, and develop controllers based on these models to stabilize the unstable
steady states that exist at high angles of attack.

3. Numerical scheme

The numerical scheme used is a fast immersed boundary method developed
by Colonius & Taira (2008), and is briefly described here. The method is then
used to develop the linearized and adjoint formulations. Consider the following form
of the incompressible Navier—Stokes equations, based on the continuous analog of
the immersed boundary formulation introduced by Peskin (1972):

du—+u-Vu=-Vp+ Rivzu + / f(&)8(& —x)dE, (3.1)
e

V-u=0, (3.2)

ué)= /u(x, t)8(x — &)dx = up, (3.3)

where u, p and f are the appropriately non-dimensionalized fluid velocity, pressure
and surface force respectively. The force f acts as a Lagrange multiplier that
imposes the no-slip boundary condition on the Lagrangian points & which arise
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from the discretization of a body moving with velocity ug. We consider the body
to be a stationary flat plate at an angle of attack «; that is, here up=0. The
Reynolds number is defined as Re = Uc/v where U is the free-stream velocity, c is the
chord length and v is the kinematic viscosity. Equations (3.1)—(3.3) are discretized in
space using a second-order finite-volume scheme on a staggered grid, and a discrete
curl operation CT(~)défV % (+) is introduced to eliminate the pressure and obtain a
semidiscrete formulation in terms of the circulation y:

d -~
&Y L CTE"f = —BCTCy +CT N(q) + bey, (3.4)

dr
ECs =up =0. (3.5)

The incompressibility condition (3.2) is implicitly satisfied by an appropriate
construction of C. The discrete Laplacian is represented by —C”Cy, using the
identity V2y =V(V-y) —V x (V x )= —V x (V x p); the constant B =1/ReA?,
where A is the uniform grid spacing. The operator E” smears the Dirac delta function
of (3.1) over a few grid points. The nonlinear term ./7(q) is the spatial discretization
of ¢ x y, where ¢ is the discrete velocity flux, in turn related to the discrete stream
function s and circulation y as

q = Cs, y=Clq and s =(CTC)'y. (3.6)

A uniform grid and a choice of simple boundary conditions result in a fast algorithm.
With a uniform grid, the discrete Poisson equation (3.6) is solved by means of
the efficient discrete sine transform. The boundary conditions specified are Dirichlet
and Neumann for the velocity components normal and tangential to the domain
boundaries, which for the flow past a flat plate imply a uniform flow in the far field.
These boundary conditions are however valid for only a sufficiently large domain,
and are imposed by employing a computationally efficient multi-domain approach.
The domain is considered to be embedded in a series of domains, each twice-as-large
as the preceding, with a uniform but a coarser grid having the same number of
grid points. The Poisson equation, with zero boundary conditions, is solved on the
largest domain and the stream function is interpolated on the boundary of the smaller
domain, which are in turn used to solve the Poisson equation on the smaller domain.
For the flow past a flat plate considered here, the typical size of the largest domain is
around 40 chord lengths in each direction. Finally, the time integration is performed
using the implicit Crank—Nicolson scheme for the viscous terms and the second-order
accurate, Adams—Bashforth scheme for the convective terms.

3.1. Linearized and adjoint equations

For deriving reduced-order models useful for control design, we first linearize
equation (3.4) about a pre-computed steady state (o, go). The linearized equations are
the same as (3.4) and (3.5) with the nonlinear term ./"(q) replaced by its linearization
about the steady state, and is denoted by A 7 (yo)y =¢qo X ¥ + ¢ X yo where the flux ¢
is related to y by (3.6). Thus, the linearized equations are

d -
& L CTETf = —BCTCy +CT N L(yo)y. (3.7)

dr
ECs = 0. (3.9)

The boundary conditions for the linearized equations are bc, =0 on the outer
boundary of the largest computational domain.
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In order to derive the reduced-order models using the procedure described earlier,
we need to perform adjoint simulations. In order to derive the adjoint equations, we
define the following inner product on the state space:

(Y1, v2) =/Q}'1'(CTC)1}'zdx- (3.9)

That is, the inner product defined on the state space is the standard L? inner
product weighted with the inverse-Laplacian operator. Since balanced truncation
is independent of the choice of the inner product (see Ilak & Rowley 2008),
we choose (3.9) as it results in the adjoint equations which differ from the
linearized equations only in the nonlinear term and is thus convenient for numerical
implementation. A derivation is outlined in Appendix B and the resulting equations
are

4 CTETY = —BCTCr +(CTC)IN L (o) 4. (3.10)

dt
ECE =0, (3.11)

where the variables ¢, § and ¥ are the duals of the discrete circulation y, stream
function s and body force f, respectively, and q,=Cé& is the dual of flux g. The
adjoint of the linearized nonlinear term is (C” C)./"1(y0)" q., which can be shown to
be a spatial discretization of V x (yo X q.) — V*(qo X q.). Since (3.10) differs from (3.7)
only in the last term on the right-hand side, the numerical integrator for the adjoint
equations can be obtained by a small modification to the linearized equations solver.

The nature of the multi-domain scheme used to approximate the boundary
conditions of the smallest computational domain, results in a multi-domain discrete
Laplacian which is not exactly self-adjoint to numerical precision, but has errors
which are smaller than those due to the numerical discretization. As a result, the
adjoint is not accurate to machine precision, but has errors which are also smaller
than those due to the numerical discretization and have been quantified using a
measure defined by e=(|(x, Ay) — (A"x, y)|)/|x||y|, where x and y are arbitrary
vectors. For example, with 200 snapshots taken from an impulse response used to
compute reduced-order models in §4.4, the maximum value of this quantity over all
pairs of snapshots is e = 5.4 x 10~*, while its mean is 9.1 x 107>,

4. Results: flow past a flat plate

We apply the model reduction techniques developed in the previous sections to
the uniform flow past a flat plate in two spatial dimensions, at a low Reynolds
number, Re =100. We obtain reduced-order models of a system actuated by means
of a localized body force near the trailing edge of the flat plate; the vorticity and
velocity contours of the flow field obtained on an impulsive input to the actuator are
shown in figure 1. Using these reduced-order models, we develop feedback controllers
that stabilize the unstable steady state at high angles of attack. We first assume full-
state feedback, but use output projection described in §2.2.1 to considerably decrease
the number of outputs in order to make the model computation tractable. Later,
we relax the full-state feedback assumption, and develop a more practical observer-
based controller which uses a few velocity measurements in the near-wake of the flat
plate (shown in figure 1) to reconstruct the entire flow.
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FIGURE 1. Actuator modelled as a localized body force near the trailing edge of the flat plate,
with the angle of attack fixed at o =35°. Vorticity contours are plotted, with negative contours
shown by dashed lines. The velocity sensor locations are marked by solid circles.

4.1. Numerical parameters

The grid size used is 250 x 250, with the smallest computational domain given
by [—2, 3] x [-2.5, 2.5], where lengths are non-dimensionalized by the chord of the
flat plate, with its centre located at the origin. We use five domains in the multiple-grid
scheme, resulting in an effective computational domain 2* times larger the size of the
smallest domain; thus the largest domain is given by [—32, 48] x [—40, 40]. The time
step used for all simulations is §; =0.01.

4.2. Input and output

The actuation is modelled as a localized body force near the trailing edge of the flat
plate. The flow field obtained from an impulsive input (u(¢) =48(¢)) consists of two
counter-rotating vortices, where the circulation of each vortex is given by

B.(r) = +c(l —ard)e™”, i=1,2 (4.1)
where 1% = (x —x0;)> + (y — yo.)* (4.2)

The constants @ and ¢ determine the radius and strength of the vortices, while
(x0.i» ¥0.;) determine the location of the centres of these vortices. The velocity fields
corresponding to the functions B; do not satisfy the no-slip boundary conditions
at the plate surface; a projection step is used to enforce these conditions and the
resulting fields are used to model actuation; that is, BzB}, —i—B]z/, where the field B
is plotted in figure 1. The control is implemented in the numerical solver by simply
adding a term of the form Bu to the right-hand side of (3.7) or (3.4) for linear or
nonlinear simulations respectively.

In previous research, Taira & Colonius (2009a) considered actuators modelled as
body forces smeared over a few grid points in studying the effect of open loop constant
forcing on three-dimensional flows past a low aspect ratio flat plate, while Williams
et al. (2008) performed experiments on semicircular planforms using periodic blowing
through slots on the leading edge. The actuation above is a simplistic model of
blowing and suction, although our aim here is not to have an accurate representation
of blowing or suction, but rather to demonstrate the effectiveness of the algorithm
presented in §2.3 by developing simple controllers. Several other actuators were also
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considered by varying the constants a, ¢ in (4.1), and one of the examples that resulted
in successful control is reported here.

The energy input from the actuation, in studies using open-loop control by steady
or periodic forcing, is often quantified in terms of the momentum coefficient C,
(Greenblatt & Wygnanski 2000; Taira & Colonius 2009a) which is defined as

Ue Oac
€, = Pt (43)
7PULC

where U, is the constant actuator velocity in case of steady forcing, o, is the actuator
width and ¢ is the flat plate chord length. With feedback control, the input u is a
function of time and so is U,., and thus the momentum coefficient is time dependent.
However, for the sake of quantifying the control input, we assume that the input u has
unit amplitude and is a constant. Later, we will see that the maximum amplitude of u
is O(1), so this assumption is reasonable. Here, the maximum velocity of actuation
is Ugyet /Uy =0.07, while the actuation width is o, /c = 0.3, which gives C,, =0.15 %.
This value is within the standard range C, =0.01 %—10 % used in studies with steady
actuation (Greenblatt & Wygnanski 2000; Taira & Colonius 2009a).

We consider two different outputs of the system, and they are as follows.

(a) The velocity field over the entire fluid domain, which is used for developing
full-state feedback controllers. As discussed in §2.2.1, for large-dimensional outputs,
the model reduction procedure using approximate balanced truncation becomes
intractable as the number of adjoint simulations needed is the same as the number
of outputs. Hence, output projection is used and the observables are considered to be
the velocity field projected onto (i) unstable eigenmodes and (ii) leading POD modes
of the stable subspace dynamics (impulse response).

(b) Velocity measurements at two near-wake sensor locations, shown in figure 1,
which are used to develop observer-based feedback controllers.

The control goal is to stabilize unstable steady states using the above actuator and
sensors, for which we first develop reduced-order models using the method presented
in §2.3. We also test the robustness of these controllers in the presence of certain
random disturbances.

4.3. Steady-state analysis

Since our approach is to obtain reduced-order models of the flow linearized about a
given steady state, we first need to compute these steady states. The model reduction
of unstable systems involves projecting the dynamics onto a stable subspace, for which
we also need to compute the right and left eigenvectors of the linearized dynamics.
This section concerns this steady-state analysis, using a ‘time-stepper-based’ approach
as outlined in Tuckerman & Barkley (2000) and Kelley, Kevrekidis & Qiao (2004).

A simple way of computing stable steady states is by simply evolving the time-
accurate simulation to stationarity. However, unstable steady states cannot be found
in this manner, and stable steady states near a bifurcation point could take very long
to converge. Instead, we use a time-stepper-based approach which involves writing
a computational wrapper around the original computational routine to compute the
steady states using a Newton iteration. If the numerical time-stepper advances a
circulation field y* at a time step k to a circulation field y**" = & (p*) after T time
steps, the steady state is given by the field y, that satisfies

g(yo) =yo—Pr(yo) =0. (4.4)
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FIGURE 2. Forces on a flat plate at a fixed angle of attack @ and at Re =100, showing
a transition from a stable equilibrium to periodic vortex shedding at o ~26. Shown are
the force coefficients corresponding to the stable ( ) and unstable (----) steady states,
the maximum and minimum (—-—) and the mean (-------- ) values during periodic vortex
shedding. Also shown are the vorticity contours (negative values in dashed lines) of steady
states at o =15°, 55° and the flow fields corresponding to the maximum and minimum force
coefficients at oo = 55°.

The steady states are given by zeros of g(yo), which could, in principle, be solved for
using Newton’s method. However, the standard Newton’s method involves computing
and inverting Jacobian matrices at each iteration, which is computationally infeasible
due to the large dimension of fluid systems. Instead of computing the Jacobian,
we use a Krylov-space based iterative solver called generalized minimal residual
method (GMRES) developed by Saad & Schultz (1986) to compute the Newton
update (see Kelley 1995; Trefethen & Bau 1997 for a description of the method).
This method requires computation of only Jacobian-vector products Dg(y)- v, which
can be approximated using finite differences as [g(y +€v) — g(p)]/¢, for O <e K 1.
So, the Jacobian vector products can also be computed by invoking the appropriately
initialized time stepper. A nice feature of GMRES is relatively fast convergence to
the steady state when the eigenvalues of the Jacobian Dg(yo) occur in clusters (see
Kelley 1995; Kelley et al. 2004 for details). For systems with multiple time scales,
such as Navier—Stokes, most of the eigenvalues of the continuous Jacobian lie in the
far-left-half of the complex plane. Thus, the corresponding eigenvalues of the discrete
Jacobian D@, for a sufficiently large value of T, cluster near the origin.

The procedure described above is used to compute the branch of steady states for
the angles of attack 0 <« <90°; the parameter T in (4.4) is fixed to 50 time steps.
The lift and drag coefficients, C; and Cp, and their ratio C; /Cp with changing « are
plotted in figure 2. As with flow past bluff bodies with increasing Reynolds number
(e.g. see Provansal, Mathis & Boyer 1987), the flow undergoes a Hopf bifurcation
from a steady flow to periodic vortex shedding as the angle of attack « is increased
beyond a critical value «,, which in our computations is . =~ 27°. Also plotted in the
figure are the maximum, minimum, and mean values of the forces during shedding



Feedback stabilization of unstable steady states 461

(@1.0 (b)

‘ wﬁfmﬂuﬂﬁtﬂ Lﬂ tﬂ \\L

t

FIGURE 3. (a) Streamlines and vorticity contours (in colour) of the unstable steady state at
a=35° (b) Cp versus time, with the steady state as an initial condition.

for o > a.. We see that the (unstable) steady state values of the lift coefficient are
smaller than the minimum for the periodic shedding till « ~75°, after which they
are slightly higher, but still smaller than the mean lift for the periodic shedding.
The (unstable) steady state drag is much lower than the minimum value for periodic
shedding. The ratio C;/Cp of the (unstable) steady state is close to the mean value
for shedding. Thus, if the large fluctuations in the forces are undesirable at high angles
of attack, it would be useful to stabilize the unstable state. If higher lift is required,
it would be desirable to stabilize the state with maximum lift during vortex shedding,
but since that state is not a steady state of the governing equations, our method
cannot be used to achieve that control goal with the present flow configuration.

The steady state at o =35° is shown in figure 3(a), and a time history of the lift
coefficient C; with this steady state as an initial condition is shown in figure 3(b).
Since the steady state is unstable, the numerical perturbations excite the instability,
and the flow eventually transitions to periodic vortex shedding.

We also compute a basis spanning the right and left unstable eigenspaces (@,
and ¥,) of the flow linearized about the unstable steady states, which are required
in our model reduction procedure, for restricting dynamics onto the stable subspace.
As the flow undergoes a Hopf bifurcation, a complex pair of eigenvalues crosses
the imaginary axis from the left half of the complex plane; thus the dimension of
the unstable subspace is two. For solving the linearized eigenvalue problem we use
the implicitly restarted Arnoldi method which was implemented by Lehoucq et al.
(1998) in the form of a freely available Fortran-77 library called ARPACK. This
library can be used to compute a small number of eigenvalues (and eigenvectors)
with user-specified properties such as the largest or smallest magnitude, largest or
smallest real part, etc. to a desired accuracy. We use ARPACK to compute the leading
eigenvectors of the linearized and adjoint equations, that is, those corresponding to
the eigenvalues with the largest magnitude.

The eigenvalues u of the continuous operator are related to the eigenvalues A
of the discrete operator by u= logA/(T At), where we fix T =30 time steps. We
computed two eigenvalues with the largest magnitude for the range of angle of
attack 20 <« <90°, and found that they form a complex pair, implying an oscillating
eigenmode. The real and imaginary parts of these eigenvalues, which correspond to
the growth rate and frequency of the instability, are plotted in figure 4. The real part
of the eigenvalue becomes positive (or the eigenvalues cross the imaginary axis into
the right-half complex plane with a non-zero speed) at «. ~27°, confirming Hopf
bifurcation. For the post-bifurcation values of «, we also plot the frequency of vortex
shedding, which departs considerably from the frequency of the linear instability
growth, consistent with the finding of Barkley (2006) for the flow past a cylinder.
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FIGURE 4. (a) The real (u,) and (b) imaginary (u;) part of the eigenvalues, representing the
growth rate and frequency of the corresponding eigenmodes, of the flow linearized about the
steady states in the range 20 <a <90°. Also shown is the frequency of the periodic vortex
shedding for o =>27° (----).
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FIGURE 5. Basis vectors of the unstable eigenspace of the linearized (a, ¢) and the adjoint
(b, d) equations. Vorticity contours are plotted (negative contours are dashed).

The real and imaginary parts of the right and left (linear and adjoint) unstable
eigenvectors of the flow linearized about the steady state at o« =35° are plotted in
figure 5. These modes are qualitatively similar to the structures during periodic vortex
shedding, but have different spatial wavelengths, as reported in earlier studies by
Noack et al. (2003) and Barkley (2006).

4.4. Reduced-order models

We now describe the process involved in deriving reduced-order models of the input-
output response of (2.1), which in this example are the linearized incompressible
Navier—Stokes equations (3.7) and (3.8). The actuator used is a localized body force
close to the trailing edge of the flat plate, plotted in figure 1. The models are derived
using the procedure outlined in §2.3. As seen in (2.19), the output of the system
is considered to be the entire velocity field, observed as a projection onto (a) the
unstable eigenspace, and (b) the span of the leading POD modes of the impulse
response restricted to the stable subspace.
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FIGURE 6. Vorticity contours of (a) the flow field shown in figure 1, projected onto the stable
subspace, and (b, ¢) the first- and fifth-most energetic POD modes of the impulse response,
restricted to the stable subspace.

The first step in computing the reduced-order models is to project the flow field B
onto the stable subspace of (3.7, 3.8) using the projection operator IP; defined in (2.13);
the unstable eigenvectors computed in §4.3 are used to define IP; numerically. The
vorticity contours of the corresponding flow field IP;B are plotted in figure 6(a). The
next step is to compute the impulse response of (2.14). Instead, for practical reasons,
we compute the impulse response of

x, =P,Ax, + IP,Bu; (4.5)

that is, at each time step of integration, we project the state x, onto the stable
subspace of A. Because the stable subspace is an invariant subspace for the linearized
dynamics (3.7), theoretically, the impulse responses of (2.14) and (4.5) are exactly the
same, and they are the same as that obtained by restricting the impulse response
of (2.1) to its stable subspace. However, due to the (small) numerical inaccuracy
of the projection IP; (which is a result of the numerical inaccuracy of the unstable
eigenspaces @, and ¥ ), the dynamics of (2.14) is not strictly restricted to the stable
subspace and, in the long term, grows without bound in the unstable direction. Thus,
the state is projected at each time step to ensure that it remains constrained to
the stable subspace. Next, we compute the POD modes 6 of the impulse response
of (4.5), and consider the output of (4.5) to be the state x, projected onto a certain
number of these POD modes. Here, 200 snapshots spaced every 50 time steps were
used to compute the POD modes. The leading 4 and 10 POD modes contain 85.00 %
and 99.06 % of the energy respectively and, as it has been observed in previous studies
(see Deane et al. 1991; Ilak & Rowley 2008), these modes come in pairs in terms
of their energy content, a characteristic of travelling structures; the leading first and
third POD modes are shown in figure 6.

The next step is to compute the adjoint snapshots, with the POD modes of the
impulse response (projected onto the stable subspace of the adjoint) as the initial
conditions. As the linearized impulse response, these simulations are also restricted to
the stable subspace. Again, instead of computing the response of (2.15), we compute
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FIGURE 7. Vorticity contours of the leading (in the order of HSVs of the stable subspace
dynamics) first and third balancing (a, ¢) and adjoint (b, d) modes.

that of the following system:
z, =P.A'z, + P.C"v. (4.6)

The snapshots of the impulse responses of systems (4.5) and (4.6) are stacked as
columns of X and Z, and using the expressions (2.8) and (2.9), we obtain the balancing
modes ¢’ and the adjoint modes Y. We used 200 snapshots of the linearized simula-
tion and 200 snapshots of each adjoint simulation, with the spacing between snapshots
fixed to 50 time steps, to compute the balancing transformation. These number of
snapshots and the spacing were sufficient to accurately compute the modes; further
reduction in the spacing did not significantly change the singular values from the
SVD computation (2.8). We considered the outputs to be a projection onto 4, 10 and
20 POD modes (corresponding to 4, 10 and 20 mode output-projections, as introduced
in §2.2.1). Using these modes, we use the expressions in (2.23) and (2.28) to obtain the
matrices A;, B;, ES defining the reduced-order model of the stable-subspace dynamics.
The vorticity contours of the balancing and the adjoint modes, for a 10 mode output
projected system, are plotted in figure 7. The adjoint modes provide a direction
for projecting the linearized equations onto the subspace spanned by the balancing
modes. Since these modes are quite different from the POD and the balancing modes,
the resulting models are also quite different from those obtained using the standard
POD-Galerkin technique wherein an orthogonal projection is used. Since the models
obtained using balanced truncation are known to perform better than the POD-
Galerkin models, as reported by Ilak & Rowley (2008), the better performance could
be attributed to a better choice of projection using the adjoint modes.

Since the reduced-order models of the stable-subspace dynamics are approximately
balanced, the controllability and observability Gramians of the a; dynamics of (2.23),
given by expressions (2.2), are approximately equal and diagonal. Further, their
diagonal values are approximately the same as the HSVs o; obtained by the SVD (2.8).
The diagonal values of the Gramians and the singular values for different output
projections are plotted in figure 8 for a 30 state reduced-order model. With increasing
order of output projection, the HSVs converge to the case with full-state output, and
the number of converged HSVs is roughly equal to the order of output projection,
as was observed by Ilak & Rowley (2008). We see that the diagonal elements of both
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controllability (----, o) and observability (—-—, x) Gramians of a 25 mode model with
a 4, 10 and 20 mode output projection, for the unstable steady state at o = 35.
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FIGURE 9. Outputs (projection of the flow field onto POD modes) from a reduced-order model
obtained using a 20 mode output projection. The first (a) and eleventh (b) outputs of the full
simulation ( , o) are compared with predictions of models with 4 (—-—, x), 10 (----,
V), and 20 (-------- , *) modes.

the Gramians are very close to the HSVs for the first 20 modes. For higher modes,
the diagonal elements of the observability Gramians are inaccurate, which is due to a
small inaccuracy of the adjoint formulation mentioned in § 3.1. For controller design,
we use models of order <20, for which these Gramians are sufficiently accurate.
Finally, to test the accuracy of the reduced-order models, we compare the impulse
responses of system (4.5) (i.e. restricted to the stable subspace) with that of the
model (2.23), restricting a, =0. In particular, we compare the outputs of the two
systems, which are the projection onto the POD modes; a representative case in
figure 9 shows the results of 4, 10 and 20 mode models of a system approximated
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FiGure 10. Schematic of the implementation of full-state feedback control in the nonlinear
simulations. The entire velocity is first projected onto the unstable eigenvectors and the stable
subspace POD modes to compute the reduced-order state a. The state is then multiplied by
the gain K, computed based on the reduced-order model using LQR, to obtain the control
input u.

using a 20 mode output projection (the outputs are projection onto the leading
10 POD modes). The first output, which is a projection onto the first POD mode, is
well captured by all the models until ¢ ~ 60, while the 20 mode model performs well
for all time. Also shown is the eleventh output, which is well captured only by the 20
mode model.

4.5. Full-state feedback control

The resulting models can now be used along with standard linear control techniques
to obtain stabilizing controllers. We use linear quadratic regulator (LQR) to compute
the gain K so that the eigenvalues of (A+ BK) (where the matrices were defined
in (2.23)) are in the left-half of the complex plane, and the input u = Ka minimizes
the cost

Jla, u] =/ (a"Qa + u”Ru) dr, 4.7
0

where Q and R are positive weights computed as follows. We choose @ such that

o~ o~

the first term in the integrand of (4.7) represents the energy, that is, we use @=C C,
with C defined in (2.24). The weight R is chosen to be a multiple of the identity cl,
and typically ¢ is chosen to be a large number ~10*~7, to avoid excessively aggressive
controllers. The control implementation steps are sketched in figure 10; first compute
the reduced-order state a, using the expression (2.30), then the control input is given
by u =Ka. Here, we derive the gain K based on a 22 mode reduced-order model
(with 2 unstable and 20 stable modes), using ¢ =10°, and include the same in the
original linearized and nonlinear simulations. The output is approximated using a 4
mode output projection. The difference between the linear and nonlinear simulations
is that, in the latter, the steady state field x, is subtracted from the state x, before
projecting onto the modes to compute the reduced-order state a.

Figure 11 compares the model predictions with the projection of data from the
simulations of the linearized system (3.7) and (3.8), with a control input. The initial
condition used is the flow field obtained from an impulsive input to the actuator.
Both the states shown in the figure eventually decay to zero, which implies that
the perturbations decay to zero, thus stabilizing the unstable steady state. More
importantly, the model predicts the outputs accurately for the time horizon shown in
the plots.

We now use the same controller in the full nonlinear simulations and test the
performance of the model for various perturbations of the steady state. A plot of
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(===-, X) with the projection of data from the linearized simulation ( ,0). The control
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FIGURE 12. Lift-coefficient C; versus time ¢, for full-state feedback control, with control turned
on at different times in the base uncontrolled simulation. The base case with no control (----)
has the unstable steady state as the initial condition, and transitions to periodic vortex shedding.
The control is tested for different initial conditions, corresponding to r =170, 180, 210 of the
base case, and stabilizes the steady state in all the cases ( ).

the lift coefficient C; versus time ¢, with the control turned on at different times of
the base simulation, is shown in figure 12. The initial condition for the base case
(no control) is the unstable steady state; eventually, small numerical errors excite
the unstable modes and the flow transitions to periodic vortex shedding. In separate
simulations, control is turned on at times ¢t =170, 180, 210 corresponding to the base
case. As the figure shows, the control is effective and is able to stabilize the steady
state in each case, even when the flow exhibits strong vortex shedding. We remark
that the latter two of these perturbations are large enough to be outside the range
of validity of the linearized system, but the control is still effective, implying a large
basin of attraction of the stabilized steady state. We also compare the output of
the reduced-order model with the outputs of the nonlinear simulation; the plots are
shown in figure 13. The models perform well for the initial transients, but for longer
times fail to capture the actual dynamics. This is not surprising as these perturbations
are outside the range of validity of the linear models. For control purposes, it appears
to be sufficient to capture the initial transients (approximately one period), during
which the instability is suppressed to a great extent. We remark that one could
possibly compute nonlinear models by projecting the full nonlinear equations onto
the balancing modes, or enhance the model subspace by adding POD modes of vortex
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FIGURE 13. Outputs of a system with full-state feedback control. The control gain is obtained
using LQR, and the initial condition is that corresponding to ¢ = 180 of the uncontrolled case
plotted in figure 12. Comparison of the outputs y,; and y;; of a 12 mode (2 unstable and
10 stable modes) reduced-order model (----, x) with the projection of data from the full
nonlinear simulation ( , o).

shedding and the shift modes as proposed by Noack, Papas & Monkewitz (2005) to
account for the nonlinear terms.

Finally, we note that the reduced-order model (2.23) decouples the dynamics on the
stable and unstable subspaces, and also, the dynamics on the unstable subspace can
be computed only using the unstable eigenbases @, and ¥,. Thus, we could derive a
control gain K € R based only on the two-dimensional unstable part of the model,
such that the eigenvalues of (A, — B,K) are in the left half complex plane. That is, we
can obtain a stabilizing controller without modelling the stable subspace dynamics.
We have performed simulations to test such a controller and found that it also is
capable of suppressing the periodic vortex shedding and thus results in a large basin
of attraction for the stabilized steady state. The choice of weight matrices Q and R
in the LQR cost (4.7) needs to be different to obtain a comparable performance.
However, as shown in the next section, it is essential to model the stable subspace
dynamics to design a practical controller based on an observer that reconstructs the
entire flow field using a few sensor measurements.

4.6. Observer-based feedback control

The full-state feedback control of §4.5 is not directly useful in practice, since it is
not possible to measure the entire flow field. Here, we consider a more practical
approach of measuring certain flow quantities at a small number of sensor locations.
We assume that we can measure the velocities at the sensors shown in figure 1, in
the near-wake of the plate. We remark that, even though these sensors may not be
realizable in applications, they serve as a good testing ground for our models.

4.6.1. Reduced-order models

The method described in detail in §4.4 to obtain models of a system with the
full-state output is first used to obtain models of a system with the output represented
by the two sensor measurements. For this case, the output matrix C in (2.1) has two
rows and is sparse with each row filled with Os except for the entry corresponding
to a sensor measurement, which is 1. Since the dimension of the output is small, the
output projection step of the algorithm outlined in §2.3.2 is not required. Two adjoint
simulations for each sensor location are performed, with the initial condition obtained
in two projection steps: first, the velocity field with a unit v velocity at the sensor
location is projected onto the space of flow fields satisfying the incompressibility
constraint and the no-slip boundary condition at the flat plate surface and second,
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u=Ka £=f(x)+ Bu output, y
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FIGURE 14. Schematic of the implementation of observer-based feedback control in the
nonlinear simulations. The control input u and the sensor measurements y are used as inputs
to the observer, which reconstructs the reduced-order state a. This state is then multiplied by
the gain K, to obtain the control input u. Both, the controller and observer gains K and L are
computed based on the reduced-order model.
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FiGUure 15. Contours of the initial condition for the adjoint simulation corresponding to the
left sensor location shown in figure 1.

the resulting field is then projected onto the stable subspace of the adjoint using
the global eigenmodes (i.e. using the projection operator IP;). The resulting initial
condition for the adjoint simulations is plotted in figure 15. The snapshots from
the two adjoint simulations are stacked as columns of Z, and the expressions (2.8)
and (2.9) are used to compute the balancing modes ¢’ and the adjoint modes ¥'.
We again used 200 snapshots of the linearized simulation and 200 snapshots of each
adjoint simulation, with the spacing between snapshots fixed to 50 time steps, to
compute the balancing transformation. Using these modes, we use the expressions
in (2.19) to obtain the matrices Av, BY, C defining the reduced-order model of the
stable-subspace dynamics. The resulting balancing modes are qualitatively similar to
those plotted in figure 7, however the adjoint modes which are plotted in figure 16
are different from those for the full-state output and the leading modes have support
near the sensor locations. The resulting models are again balanced; a 22 mode model
(with 2 unstable and 20 stable modes) exhibits good performance and is used to
compute the feedback gain K and to design reduced-order observers to estimate the
reduced-order states.
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FiGure 16. Contours of the leading first and third adjoint modes of the stable subspace,
corresponding to the system with the outputs being sensor measurements.

4.6.2. Observer design

Using the models derived in §4.6.1, we design an observer using a linear quadratic
(LQ) estimator, or Kalman filter. This method assumes that the errors in representing
the state @ and and the measurement y (due to the inaccuracies of the model) are
stochastic Gaussian processes, and results in an estimate a of the state a that is optimal
in the sense that it minimizes the mean of the squared error; refer to Skogestad &
Postlethwaite (2005) for details. We now discuss briefly our procedure for modelling
these noises; consider the reduced-order model (2.23), but with process noise w and
sensor noise v which enter the dynamics as follows:

@ = Aa + Bu + w, (4.8)
y= Ca +v. (4.9)

A key source of the process (state) noise w arises from model truncation, and second,
from ignoring the nonlinear terms in the reduced-order model. The nonlinearity of
the dynamics is important, for instance, when the model is used to suppress vortex
shedding. A source of the sensor noise arises from two sources; first, the state x is
approximated as a sum of a finite number of modes (2.16), and second, in the output
projection step, the output is considered as a projection of the (approximated) state x
onto a finite number of POD modes (2.21). Here, we approximate these two noises
as Gaussian processes whose variances are

Q = E(ww*), w = f(ameax) - Zameasa (410)
R = E(vv*), V=Y — 6ameasv (411)

and E(-) gives the expected value. Here, f(-) is the operator obtained by projecting
the nonlinear Navier—Stokes equations (3.1) onto the balancing modes @, using the
adjoint modes ¥. The state a,,.., is obtained by projecting the snapshots, obtained
from a representative simulation of the full nonlinear system, onto the balancing
modes. While w is not actually a Gaussian white-noise process, for the purposes of
observer design, all we require is an approximate measure of the size of the modelling
errors (here modelled as external disturbances), and for this purpose, the Gaussian
approximation suffices. The representative simulation we used here is the base case,
with no control, shown in figure 12, which includes the transient evolution from the
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Ficure 17. Lift-coefficient C;, versus time ¢, for estimator-based feedback control, with control
turned on at different times in the base uncontrolled simulation. The base case (----) is the
same as in figure 12, and the control is tested for different initial conditions, corresponding
to +=170, 180, 210 of the base case ( ). In both the cases, the controller stabilizes the
flow to a small neighbourhood of the steady state.

steady state to periodic vortex shedding. The resulting estimator is of the form
a@ = Aa +Bu + L(y — Ca), (4.12)
j = Ca, (4.13)

where a is the estimate of state a, y is the estimated output, and L is the observer
gain. The estimator is then used along with the full-state feedback controller designed
in §4.5 to determine the control input; a schematic is shown in figure 14.

4.6.3. Observer-based control

The models obtained in §4.6.1 are used to design dynamic observers based on the
vertical (v) velocity measurements at the sensor locations. A 22 mode reduced-order
model, with 2 and 20 modes describing the dynamics on the unstable and stable
subspaces respectively, is used to design a Kalman filter for producing an optimal
estimate of the velocity field based on Gaussian approximations of error terms (4.10)
and (4.11). This estimate is then used along with reduced-order model controller to
determine the control input, as shown in figure 14. The results of this observer-based
controller (or compensator) are shown in figures 17 and 18. The compensator again
stabilizes the unstable operating point, and furthermore, the observer reconstructs
the reduced-order model states accurately. Initially, the observer has no information
about the states (the initial condition is zero), but it quickly converges to and follows
the actual states.

Finally, to test the robustness of the resulting controller, an external disturbance is
added to the flow upstream of the flat plate. The disturbance is modelled using the
same functional form (4.1) used to model the actuation but with the parameters a =4
and ¢=0.05. The vorticity contours of the resulting field are plotted in figure 19
and the disturbance has support over a much wider region as compared to the
actuation. The disturbance amplitude is modelled as a random variable sampled from
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FIGURE 18. States of the system with observer-based control; the states reconstructed (—---, X)

by a 22 mode observer quickly converge to the actual states ( , 0). The initial conditions
used are those corresponding to ¢t =180, 210 (top and bottom) of the uncontrolled case shown
in figure 17.
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FIGURE 19. Estimator-based feedback control, in the presence of an external disturbance
modelled using (4.1). Plot (b) shows the vorticity contours of the disturbance. The resulting
lift coefficients are shown in plot (a), both with the control turned off (----) and on ( ),
with the initial condition being a velocity field from the vortex shedding regime. The controller
stabilizes the flow even in the presence of these disturbances. The control input u, which
remains O(1), is shown in plot (c¢).

a uniform distribution in the range [—1, 1]. The lift coefficients, in the presence of
this disturbance, for the flow with control turned off and on, are shown in figure 19.
With the control off, the lift stays in the neighbourhood of its value during vortex
shedding. When the compensator is turned on, the shedding is suppressed and the
steady state is again stabilized. However, the disturbance causes the lift to fluctuate
around the steady state value. When the disturbance is finally turned off, the lift again
converges to the steady state value.
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5. Summary and discussion

We presented an algorithm for developing reduced-order models of the input—output
dynamics of high-dimensional linear unstable systems, extending the approximate
balanced truncation method developed by Rowley (2005) for stable systems. We
assumed that the dimension of the unstable eigenspace is small and the corresponding
global eigenmodes can be numerically computed. The modelling procedure treats the
dynamics on the unstable subspace exactly and obtains a reduced-order model of the
dynamics on the stable subspace.

In a proof-of-concept study, the procedure was applied to control the two-
dimensional low-Reynolds-number flow past a flat plate at a large angle of attack «,
where the natural flow state is periodic vortex shedding. We first performed a
continuation study at Re =100 and computed the branch of steady states with «
varying from 0 to 90°; we show that the flow undergoes a Hopf bifurcation from
steady state to periodic shedding at o ~27°. We developed reduced-order models of
the linearized dynamics at o =35° actuated by a localized body force close to the
trailing edge of the plate. The outputs were considered to be the entire flow field,
projected onto the unstable eigenmodes and the leading POD modes of the impulse
response simulation (restricted to the stable subspace). We developed stabilizing
controllers based on the reduced-order models to stabilize the unstable steady state
and showed that the models agreed well with the actual simulations. We also included
the controllers in the full nonlinear simulations, and showed that they had a large-
enough basin of attraction to even suppress the vortex shedding. For such large
perturbations, however, the model agreement with the full simulation was good only
for short times. A natural step towards improving these models would be to project
the full nonlinear equations onto the balancing modes to obtain nonlinear models.
Alternately, the balanced models, which accurately capture the transient dynamics,
could be combined with the POD-based models using shift modes of Noack et al.
(2005) which accurately capture vortex shedding and some of the transient dynamics.
An interesting future direction is development of algorithms to compute nonlinear
balanced models, for instance, based on the theoretical work of Scherpen (1993).

Instead of computing nonlinear models, here we pursued a step towards more
practical controllers by considering an observer-based control design, in which the
outputs were modified to be just two near-wake velocity measurements. The nonlinear
terms in the equations, which our models do not capture, were treated as process
noise, and the error in modelling the outputs was treated as sensor noise. We designed
a 22 mode reduced-order observer which reconstructed the flow field accurately, and
along with the controllers, suppressed vortex shedding and stabilized the flow in a
small neighbourhood of the unstable steady state. We remark that the actuator and
sensors considered here are not practically realizable, but the methodology presented
here can be extended to a more practical actuation such as blowing and suction
through the plate and measurements using surface pressure sensors. Furthermore, the
choice of sensor locations in this study was ad hoc, and an interesting problem is
of finding the optimal sensor locations, for a given actuator. The controllers present
here are designed to operate at a fixed set of parameters (such as Re and «), and
it would be interesting to test their performance at off-design parameter values; the
study on the performance of models of the linearized channel flow at off-design Re
by Ilak & Rowley (2008) shows promise in that direction.

A motivation for the choice of our model problem was to develop tools towards
manipulating wakes of MAVs. Recently, Taira & Colonius (2009b) performed a
numerical study of flow past low-aspect-ratio plates, and a future direction we intend
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to undertake is to perform a detailed continuation study of the same flow to explore the
existence and stabilization of high-lift unstable steady states in this three-dimensional
flow.

Finally, we point out that while the balanced modelling procedure pursued in
this paper works well, and often substantially outperforms simpler approaches using
POD (e.g. as shown in Ilak & Rowley 2008), the overall procedure is admittedly
complex. A significant limitation is that our approach requires adjoint simulations,
which are not always available. In a recent development reported in Ma, Ahuja &
Rowley (2009), the approximate balanced truncation method was shown to be
equivalent to a system identification technique called the eigensystem realization
algorithm (ERA) developed by Juang & Pappa (1985). ERA has two main advantages
over approximate balanced truncation: one is that the same models can be obtained
without any adjoint simulations and the method can thus be used in experiments;
second, if used in numerical simulations, ERA has a substantially lower computational
cost. The disadvantage is that, unlike approximate balanced truncation, it does not
provide the direct and adjoint modes. These modes are useful for various purposes,
such as obtaining models of nonlinear systems, retaining parameters in the reduced-
order models, or for investigating the optimal actuator and/or sensor locations. Even
though ERA is valid only for stable systems, it could in principle be used for unstable
systems such as those considered in this paper to model the dynamics on the stable
subspace.

The authors would like to thank Tim Colonius and Kunihiko Taira for their
tremendous help in adopting their immersed boundary solver. The authors would
also like to thank Ioannis G. Kevrekidis, Sung Joon Moon and Liang Qiao for their
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U.S. Air Force Office of Scientific Research grant FA9550-05-1-0369 and this support
is gratefully acknowledged.

Appendix A. Balancing transformation for unstable systems

Without loss of generality, a transformation T (and its inverse) that decouples the
stable and unstable dynamics of (2.1) can be written as
s*
P Al
=) (A1)

N

T=(T, T, r1=<
where the columns of T, and T, span the unstable and stable right eigenspaces
of A, while the columns of S, and S; span the unstable and stable left eigenspaces
of A. Further, these matrices are scaled such that S,T,=1, and S,T,=1,. The

transformation (A 1) decouples the dynamics of (2.1) as given in (2.4) with the

various matrices defined as follows:
A, =S.AT,, B,=S!B, C,=CT,,
N . (A2)
A, =S'AT,, B,=SB, C,=CT,.

Using (A 1) in (2.5), the Gramians of the original system (2.1) are

W, =TWT, +TWT,,

- . s (A3)
w, =S8 W:s, +S,WS;,
where W) and W, are the Gramians corresponding to the system defined
by (A;, B, Cy), while W2 and W: are the Gramians corresponding to the system
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defined by (—A,, B,,C,). Let @, € R™*" be the transformation that balances the
Gramians W. and W, while @, cIR™*" be the transformation that balances W:
and W;. Then, it can be verified that the transformation that balances the Gramians W,
and W, is given by

o= (1,0, T.0,)Z% (o, @,). (A4)
Thus, the balancing transformation consists of two parts @, and @, which respectively
balance the dynamics on the unstable and stable subspaces of A. As per the
technique of Zhou et al. (1999), a reduced-order model can be obtained by truncating
the columns of @ that correspond to the relatively uncontrollable and unobservable
states. As we will show now, the algorithm outlined in §2.3 essentially computes
the leading columns of @ (and the corresponding rows of its inverse). We show
that the controllability Gramian of the stable dynamics of (2.1), which are defined
by (2.14), is the same as the ‘stable’ part of the Gramian defined in (A 3). Note that
using (A 1) and the definition (2.13), the projection operator IP; can be written as

P, =1-T,S, =TS,. (AY)
Using the definition (2.2), the controllability Gramian of (2.14) is

W = / P4 (P, B) (P,B) ¢ P4 dr,
0
:/ T, eSAT S:B B'S; gl ASt T, dt using (A 5),
0 (A6)

= Tx(/ eh' B, B. A dt )Ts using (A 2),
0

= T,W.T,,
which is the same as the stable part of W.. Similarly, it can be shown that the
observability Gramian Wf, of (2.14) is the same as the ‘stable’ part of the observability
Gramian W, :

W, = / B A (PiCh) (PiCT) e® A dr = STWES,. (A7)
0
Thus, balancing the Gramians I/NVZ and Wi is identical to balancing the parts of the

Gramians W, and W, of the original system (2.1) that are related to the dynamics on
the stable subspace of A.

Appendix B. Derivation of the adjoint equations

In this appendix, we derive the adjoint of the linearized semidiscrete equations (3.7)
and (3.8). Let (¢, ¥) be the weighting functions corresponding to (y, f). Then, using
the inner product defined in (3.9), the weak form of (3.7) and (3.8) is

! Tt (4Y TET § T T
/O/g;-(c c) (E+csf+ﬁc Cy—cC ,/VL(yo)y)dxdt

+/0T/ﬂ¢-ECsdxdt=0. (B1)
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Integrating by parts with respect to ¢t and rearranging terms,
T
[ [ v (oS ey icey + s — ((cer
0 2
X CT/ifL(yo)) dxdt+/ / EC(CTC) ;) dx dr + (y, ;)‘ =0. (B2)

For linearization about stable steady states, y —0, as T — o0, and if the adjoint
equations are integrated backwards in time, ¢(t =0) — 0. So, the last term on the
left-hand side of (B2) vanishes identically. If (B2) is to hold for all values of y and f,
we get the following adjoint equations hold:

S Ty = —peTCr + (0L L) 4, (B3
ECE — 0, (B4)

where £ =(C"C)~'¢ and ¢g,=CE can be thought of as the weighting functions
corresponding to the streamfunction s and the flux ¢, respectively. Now, (B 3) and
(B4) have the same form as (3.7) and (3.8) except for the nonlinear term. Thus, the
same time-integration scheme can be used for both, with the appropriate (linearized)
nonlinear terms.
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